TGF-YP-SI is an electrically insulating thermally conductive very high performance silicone gap filler. It is ideal for use in applications where a very good thermal transfer over large gaps caused e.g. by big tolerances or different stack up heights must be achieved. Due to the specific formulation and filling with ceramic particles the silicone elastomer has an outstandingly high thermal conductivity. Through its softness and plasticity the material perfectly mates to irregular surfaces thus filling gaps at low pressure. By its use the total thermal resistance is minimised. The natural tackiness of the material allows for an easy and reliable pre-assembly.

elease 04 / 2

PROPERTIES

- Plastic putty
- Soft and compliable
- ☐ Thermal conductivity: 6.0 W/mK
- Extraordinary chemical resistance and longterm stability
- Residue-free removal after use
- ☐ Two-side self-tacky

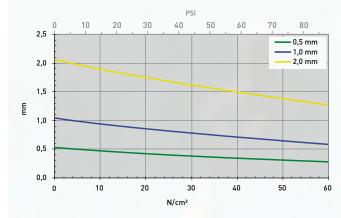
AVAILABILITY

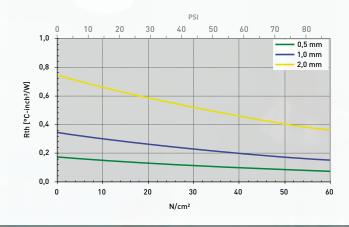
- ☐ Sheet 460 x 100 mm☐ Tacky on both sides
- (TGF-YPXXXX-SI)

 ☐ Die cut parts
- Kiss cut parts on sheet

APPLICATION EXAMPLES

Thermal link of:


- SMD packages
- Through-hole vias
- Capacitors
- Electronic parts to heat pipes For use in Automotive applications / Laptops / Medicine engineering / Industrial PCs


Property	Unit	TGF-YP0500-SI	TGF-YP1000-SI	TGF-YP2000-SI
Material		Ceramic filled silicone	Ceramic filled silicone	Ceramic filled silicone
Colour		Grey	Grey	Grey
Thickness	mm	0.5	1.0	2.0
Hardness	Shore 00	55	55	55
UL Flammability (Equivalent)	UL 94	V0	VO	VO
RoHS Conformity	2002/95/EC	Yes	Yes	Yes
Thermal				
Resistance ¹ @ 60 PSI @ Thickness	°C-inch²/W (mm)	0.10 (0.35)	0.20 (0.75)	0.45 (1.50)
Resistance ¹ @ 30 PSI @ Thickness	°C-inch²/W (mm)	0.13 (0.45)	0.27 (0.90)	0.59 (1.75)
Resistance ¹ @ 10 PSI @ Thickness	°C-inch²/W (mm)	0.16 (0.49)	0.32 (0.95)	0.67 (1.90)
Thermal Conductivity	W/mK	7.0	7.0	7.0
Operating Temperature Range	°C	- 40 to + 150	- 40 to + 150	- 40 to + 150
Electrically				
Dielectric Strength	kV / mm	>10	>10	>10
Volume Resistivity	Ohm - cm	> 1.0 x 10 ¹²	> 1.0 x 10 ¹²	> 1.0 x 10 ¹²
Dielectric Constant	@ 1 MHz	7	7	7

Test Methods: ¹ASTM D 5470. All data without warranty and subject to change. Please contact us for further data and information

Thicknesses: 0.5 mm / 1.0 mm / 2.0 mm

mm vs. N/cm² (PSI) / Rth vs. N/cm² (PSI)

